Learning Markov random walks for robust subspace clustering and estimation

نویسندگان

  • Risheng Liu
  • Zhouchen Lin
  • Zhixun Su
چکیده

Markov Random Walks (MRW) has proven to be an effective way to understand spectral clustering and embedding. However, due to less global structural measure, conventional MRW (e.g., the Gaussian kernel MRW) cannot be applied to handle data points drawn from a mixture of subspaces. In this paper, we introduce a regularized MRW learning model, using a low-rank penalty to constrain the global subspace structure, for subspace clustering and estimation. In our framework, both the local pairwise similarity and the global subspace structure can be learnt from the transition probabilities of MRW. We prove that under some suitable conditions, our proposed local/global criteria can exactly capture the multiple subspace structure and learn a low-dimensional embedding for the data, in which giving the true segmentation of subspaces. To improve robustness in real situations, we also propose an extension of the MRW learning model based on integrating transition matrix learning and error correction in a unified framework. Experimental results on both synthetic data and real applications demonstrate that our proposed MRW learning model and its robust extension outperform the state-of-the-art subspace clustering methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

Comparison of Random Walk Based Techniques for Estimating Network Averages

Function estimation on Online Social Networks (OSN) is an important field of study in complex network analysis. An efficient way to do function estimation on large networks is to use random walks. We can then defer to the extensive theory of Markov chains to do error analysis of these estimators. In this work we compare two existing techniques, Metropolis-Hastings MCMC and Respondent-Driven Sam...

متن کامل

Predictive Subspace Learning for Multi-view Data: a Large Margin Approach

Learning from multi-view data is important in many applications, such as image classification and annotation. In this paper, we present a large-margin learning framework to discover a predictive latent subspace representation shared by multiple views. Our approach is based on an undirected latent space Markov network that fulfills a weak conditional independence assumption that multi-view obser...

متن کامل

Learning Segmentation by Random Walks

The context here is image segmentation because it was in this domain that spectral clustering was introduced by Shi and Malik in 2000. Meila and Shi provide a random-walk interpretation of the spectral clustering algorithm, and then use a transition probability matrix to create a model which learns to segment images based on pixel intensity (which they call “edge strength”) and “co-circularity”...

متن کامل

Learning Robust Subspace Clustering

We propose a low-rank transformation-learning framework to robustify subspace clustering. Many high-dimensional data, such as face images and motion sequences, lie in a union of low-dimensional subspaces. The subspace clustering problem has been extensively studied in the literature to partition such highdimensional data into clusters corresponding to their underlying low-dimensional subspaces....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2014